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FLOW AND HEAT TRANSFER OF AN ANOMALOUSLY VISCOUS FLUID 

IN THE GAPBETWEEN ROTATION AND STATIONARY DISKS 

WITH NONUNIFORM PRESSI~E ABOUT THE PERIMETER 

V. M. Shapovalov, N. V. Tyabin, and L. M. Beder UDC 532.135:536.24 

The problem of bypass flow of a liquid under the influence of nonuniform pressure 
about the perimeter is solved. 

One of the more promising pumps for transporting melts of polymers and high-viscosity 
liquids is the so-called circular pump [I]. It has several technicoeconomic advantages over 
conventionl screw pumps, particularly high efficiency. The pressure about the perimeter of 
a circular pump is nonuniform, which results in bypass flow of the liquid in the space between 
the body and the end of the rotor. It is interesting to evaluate the size of this flow, since 
it affects the overall efficiency of the pump. Also, analysis of this type of flow may prove 
useful in the design of precision-metering spur-gear pumps, for which stability of flow rate 
is very important. The end seal can be regarded as a disk-disk system in which the liquid is 
subjected to intensive shear strains. A flow diagram is presented in Fig. I. The top disk 
(pump body) is stationary, while the bottom disk (pump rotor) rotates with an angular veloc- 
ity ~. We will ignore the hydrodynamic effect of the shaft. A bridge separating the intake 
and delivery zones is located at the point r = R, ~ = 0. The bridge has negligibly small 
angular dimensions and its hydrodynamic effect can be ignored. The velocity field is a three- 
dimensional shear field. 

Considering the condition h << R, we assume that creeping flow is realized in the gap, 
and the forces of gravity and inertia can be ignored. Here, ~P/Bz = 0, and there is no flow 
in the z direction. With allowance for these assumptions, the following boundary-value prob- 
lem is formulated: 

Or - az \ az ] '  ( l ) 
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1 oP o( 
r a ~ - -  az Q~ az ) '  (2)  

av~ + v~ +1__ av___~= o, (3; 
Or r r aq~ 

z = h ,  v r  z = O ,  v r  v~=O,  r - R ,  P::P~(q~). 

We assume that the rheological properties of the medium are characterized by the equation 

Considering that the rotational velocity of the liquid is significantly greater than its 
radial velocity: 

we have the following for viscosity 

v~ >> v~, (4) 

t arm I n-l. 
~=~~ az I (5) 

We determine the component vr as the sum of functions 

V~ --=- V (z, r, q0) ~- W (z, r), ( 6 ) 

where V is due (as will be shown below) to the nonuniformity of the pressure about the perim- 
eter and W is due to the rotation of the bottom disk. 

Having inserted (5) and (6) into (2), we obtain 

~o~ o--# = oz --~--~ + az I - f f + - - g - z  " ( 7 )  

We assume that the inequality W >> V is valid for the velocity components (6). Considering 
this, we can write Eq. (7) in the form 

n �9 ( 8 )  

In accordance with (8), the effects of the viscosity anomaly are due to the dominant compon- 
ent W. In obtaining (8), we took the first two terms of the expansion of function (5). The 
left side and the first term of the right side of Eq. (8) are independent of ~, so we reason 
that the component W is determined by the equation 

a l =0; 
Oz L \ Oz / ] 

for the satisfaction of which it is sufficient to set 82W/Sz 2 = -0 .  Here, to determine V we 
have the equation 

1 OP _ iz--O ( t  OW I~-~'OV ' 

With a l l o w a n c e  f o r  t h e  e q u a t i o n s  o b t a i n e d ,  p rob lem ( 1 ) - ( 3 )  can be b roken  down i n t o  two 
problems: the first boundary-value problem 

O2W/Oz2=O, z = h  W = O ,  z = O  W=~or;  ( 9 )  

while the second 

1 __OP __ 0 (J OW '~-1 Or, \ 1 OP = n. 0 (I OW ln-r OV ) , (ii) 

~o Or Oz - - g /  l ~ ) , ( l O ) ~,;r O~p Oz W Oz 

Ov r + ,v~_ ~, t __OV : 0 ,  (12) z = h ,  V = v  r :O,  
Or r r O~p 

(13) 
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z =.0, V - - v , - - O ,  

r := R, P=Pl(CP).  

Equations (9) characterize flow of the fluid in a disk-disk viscometer and, 
for W we can write 

i - - K  ' (16) 

The right sides of Eqs. (i0) and (ii) are independent of z. Thus, having inserted (16) into 
(i0) and (ii), and having integrated over z, with allowance for (13) and (14) we obtain 

z (h - -  z) ( h I " - 1 0 P  
v, -  . . . .  , (17) 

2~o ~ (or / Or 

V z ( h - - z )  ( h I ~-~ OP 
2~orn \ - ~ r  / O~ ( 18 ) 

(14)  

(15) 

a c c o r d i n g  to  [ 2 ] ,  

The function P(r, ~) in (17) and (18) is unknown. Having inserted (17) and (18) into Eq. (12), 
we obtain an equation for P: 

02P 1 OP 1 02P 
- -  + ( 2 - -  n) - -  ~ - -  O, ( 1 9 )  

Or s r Or nr ~ O~ 2 

which at n = I becomes the Laplace equation. In the general case (n ~ i), creeping flow in 
the components V and Vr is not the Hill-Shaw type of flow [3]. The pressure distribution in 
the gap depends on the flow index n. The solution of Eq. (19), with allowance for condition 
(15) and the boundedness condition P < ~ at r = 0, has the following form when obtained by 
the Fourier method [4]: 

,,-1 ~ / ~ + ~  

~ _ a~  4_ (ah Cos kqD -t- ~k sin kcp), ( 20 ) 
P,~ 2 " k~J 

where ak and Bk are Fourier coefficients of the function PI/Pm: 

1 I ( P ~  1 izt P1 ah = -- cos kcpdcp, [~k = sin kq~dcp for k ~ 1. 
Pm ~ 0 P~ 

The ratio P/Pm in (20) characterizes the dimensionless pressure (P/Pm & i if we take as Pm the 
difference between the maximum and minimum pressures on the perimeter and if we regard P and 
Pl as the excess pressures relative to the minimum pressure). We assume that the function PI 
satisfies the periodicity condition 

P~ (r + 2a) = P~ (~). 

I n s e r t i n g  (20)  i n t o  (17)  and ( 1 8 ) ,  we o b t a i n  

V r 2R~o \ (o--'7-/ ~-i 2 + ] /  4 t- (ah cos k~+1~1r sin k~ 

V = --- 

n - - I  / - ( l - - n )  2 , h ~ 

":'~ \ R ) ([~hcoskq~-- ah sinkq$. (22)  

According to (21), the velocity profile in the cross section of the slit is parabolic, while 
the profile of v~ is made up of the linear profile (16) and parabolic profile (22). 

The overflow from the delivery zone to the intake zone can be determined by using the com- 
ponent Vr. A circular pump is characterized by a monotonically increasing pressure distribu- 
tion about the perimeter, as shown in Fig. i. Here, the diagram of radial velocity on the per- 
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Fig. i. Diagram of fluid flow in the seal of a circular pump. 

Fig. 2. Distribution of dimensionless parameters over the per- 
imeter of the disk gap: I) a priori assigned pressure dis- 
tribution; 2) approximation by a trigonometric polynomial; 3-5) 
diagrams of dimensionless velocity Vr with different values of 
the flow index: n = 0.i, 1.0, 2.0. 

imeter changes sign. The liquid flows out of the gap in the sector ~2--2~(~(~| and flows 
into it in the sector ~|<~<~2 �9 The volumetric flow rates of the inflowing and outflowing 
liquids are equal and determine the rate of bypass flow Q. 

The radial velocity on the perimeter, averaged over the height of the gap, is determined 
as the integral 

- I h 

v~ - h _f v~ (r = R) dz 
0 

or, with allowance for (21), 

"2 " - '  k=t 7 + ] -4 + (akcoskq~+~ksinkq~). (23) 

The condition for calculating the angles % and % has the form 

~ = %,~, ~=0 

The volumetric rate of bypass flow in the sector ~i~2 is characterized by the integral 

~2 

or, with allowance for (23), 

Q- h3pm ( ~)n--I =Z__k_t ( ~  _~_ /(1 .... 4 n)~ + ~ )  [ah(sink%--sinkqh)--~(cosk%--cosk%)]. (24) 
Let us find the frictional moment of the rotor. Let the shear stress in the gap be deter- 

mined by the expression 

1279 



OW . - I  Ov~ 

Tz~ = 'u~ ~ Oz 

Integrating (25) over the surface of the bottom disk (z = 0), we find 

(25) 

.., o w  . - ,  ov~, ]i (26) 

Having inserted (6), (16), and (18) into (26), we write 

.OR3 2a 0 l't 
= i '' ..o.n 

2a i OP 

Having integrated the first expression in the right side and having changed the order of in- 
tegration in the second, we obtain 

"'~ (-W (,) (-;-) M -- n ~- 3 2n [P (~p = 2a) " P  (q9 ----- 0)1 d . 

Due to the periodicity of the function P, the second term is equal to zero. Thus, circular 
overflow of the liquid (due to the pressure nonuniformity) does not create a resulting turn- 
ing moment. Finally, we have the following for the turning moment and the intake power N = 
IM l: 

M =  2a~t~ ( - ~ )  ' '  n + 3  N -- 2np~~176 (--0~-) '~" n + 3  

Let the pressure distribution about the perimeter have the form shown in Fig. 2. Figure 
2 also shows an approximation of an a priori relation with the use of the first six terms of 
Fourier series (20). The numerical values of the Fourier coefficients were found by the meth- 
od in [5, p. 558]. 

Equation (23) is conveniently written in dimensionless form: 

v~- - - - - -~  ( n - 1  + ] / / ( 1 - - n ) ~ . + ~ ) ( a h c o s k q ~ + [ ~ h s i n k c 9 ) ,  
k=l 2 4 

where 

Figure 2 shows the distribution of Vr about the perimeter for different values of the parameter 
n. It is apparent from the figure that themaximum inflow velocity is found between the pres- 
sure maximum and the bridge (~=0; 2~). The velocity Vr changes sign in the region of the per .... 
rimeter 1.75~ < ~ < 2~, so that circulatory flow of the liquid takes place in the vicinity of 
of the delivery pipe. The velocity Vr increases with a decrease in n and Vr + = at n + 0. 
The position of the points at which Vr = 0 depends little on the flow index. Thus, with a 
change in n from 0.i to 2, the value of 
92 changes from 5.9952 to 5.9936 rad. 

We write Eq. (24) in the form 

Q _ 

~I changes from 2.66 to 2.7384 rad and the value of 

) 

h.Pm ( h 
6~o k--~-]  ;(n), 

where 

; =  T 2 + ~- k=~ 4 n ] 2 2 2 " 
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The value of C depends on the form of the function PI and the flow index. For the case being 
examined, ~ is approximated by the following expressions in the range 0.i < n < 2 with an error 
no greater than 5%: ~ = 0.46 + 0.13/n for 0.i <= n < i, while ~ = 0.19n 2 - 0.44n + 0.84 for 
i < n < 2. When n = 1.16, the function ~ has a minimum. 

The validity of assumption (4) is confirmed by numerical estimates of the overflow rates 
for practical values of the parameters. On the average, the component ve is greater than Vr 
by two orders of magnitude. Since Vr and V are commensurate, then the inequality W >> V is 
also valid. 

In the formulation used here, the effects of the viscosity anomaly are due to the shear 
field resulting from rotation of the rotor. Thus, theoretical relations (21), (22), (23), and 
(24) lose meaning at m = 0. If we replace the complex ~0(mR/h) n-1 in these expressions by 
and regard ~ as the effective viscosity, then they can be used for the case n = i, including 
t0 = 0. 

Intensive heating occurs in the seal gap. Estimates show that only a small amount of 
this heat is removed with the bypass flow. Most of the heat is removed through the disks. In 
the case of polymer melts of low thermal conductivity, overheating of the material may lead 
to its degradation. Let there be a stationary temperature field in the gap. Convective heat 
transfer will be ignored. With allowance for R >> h and (4), the Fourier-Kirchhoff equation 
has the form 

--__ av~ ~, O~T --~,-- ( 2 7 )  
az ~ oz 

A s s u m i n g  v~ = W a n d  c o n s i d e r i n g  t h e  b o u n d a r y  c o n d i t i o n s  T ( z  = O) = T ( z  = h )  = Td ,  a f t e r  i n t e -  
g r a t i n g  (27) twice over z, we obtain: 

G- 
The greatest temperature increment T - Td occurs at the points with the coordinates z = h/2 
and r = R: 

T - -  T c - -  Ix~ l - n  2~, (~ ( 2 8 ) 

According to (28), at n = i the increase in temperature is independent of the gap height h. 

NOTATION 

R, ~, radius and angular velocity of rotor; r, z, ~, cylindrical coordinates; h, height 
of gap; P, pressure; ~, viscosity; ~0, n, rheological parameters; 12, second invariant of 
strain-rate tensor; Vr, v~, velocity components; V, W, components of velocity v~; PI, pres- 
sure distribution on the perimeter of the disks; Pm, maximum pressure difference on the per- 
imeter; k, number of harmonic; akz ~k, Fourier coefficients; ~i, ~2, angles of position of 
points on the perimeter at which Vr = 0; Q, rate of bypass flow; Vr, radial velocity on the 
perimeter averaged over the gap height; ~ze , shear stress; M, frictional moment; N, power; 
Vr, dimensionless radial velocity on the perimeter; ~, parameter dependent on the flow index; 
~, thermal conductivity of the liquid; T, Td, temperature of liquid and disks, respectively. 
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